In many applications of machine learning, such as machine learning for medical diagnosis, we would like to have machine learning algorithms that do not memorize sensitive information about the training set, such as the specific medical histories of individual patients. Differential privacy is a framework for measuring the privacy guarantees provided by an algorithm. Through the lens of differential privacy, we can design machine learning algorithms that responsibly train models on private data. Our works (with Martín Abadi, Úlfar Erlingsson, Ilya Mironov, Ananth Raghunathan, Shuang Song and Kunal Talwar) on differential privacy for machine learning have made it very easy for machine learning researchers to contribute to privacy research—even without being an expert on the mathematics of differential privacy. In this blog post, we’ll show you how to do it. Read More
Daily Archives: March 25, 2019
Semi-supervised knowledge transfer for deep learning from private training data
Some machine learning applications involve training data that is sensitive, such as the medical histories of patients in a clinical trial. A model may inadvertently and implicitly store some of its training data; careful analysis of the model may therefore reveal sensitive information.To address this problem, we demonstrate a generally applicable approach to providing strong privacy guarantees for training data:Private Aggregation of Teacher Ensembles(PATE). The approach combines, in a black-box fashion, multiple models trained with disjoint datasets, such as records from different subsets of users. Because they rely directly on sensitive data, these models are not published, but instead used as “teachers” for a “student” model. The student learns to predict an output chosen by noisy voting among all of the teachers, and cannot directly access an individual teacher or the underlying data or parameters. The student’s privacy properties can be understood both intuitively (since no single teacher and thus no single dataset dictates the student’s training) and formally, in terms of differential privacy. These properties hold even if an adversary can not only query the student but also inspect its internal workings.Compared with previous work, the approach imposes only weak assumptions on how teachers are trained: it applies to any model, including non-convex models like DNNs. We achieve state-of-the-art privacy/utility trade-offs on MNIST and SVHN thanks to an improved privacy analysis and semi-supervised learning. Read More
Alexa, Will I Be Able to Patent My Artificial Intelligence Technology This Year?
The patentability of artificial intelligence (AI) has been increasingly scrutinized in light of the surge in AI technology development and the ambiguity regarding the interpretation of software-related patents. The Federal Circuit has gradually refined the criteria for determining subject matter eligibility for software-related patents, and based in part on such jurisprudence, earlier this year the U.S. Patent and Trademark Office (USPTO) released revised guidance on examining patent subject matter eligibility under 35 U.S.C. §101. See 2019 Revised Patent Subject Matter Eligibility Guidance, 84 Fed. Reg. 50 (Jan. 7, 2019). Considering the advances in AI technology and intellectual property law, how do these recent developments shape the outlook of AI patentability? Read More
Are Deep Neural Networks Dramatically Overfitted?
If you are like me, entering into the field of deep learning with experience in traditional machine learning, you may often ponder over this question: Since a typical deep neural network has so many parameters and training error can easily be perfect, it should surely suffer from substantial overfitting. How could it be ever generalized to out-of-sample data points? Read More
Welcome To The Machine Learning Biases That Still Exist In 2019
With machine learning, the world relies on technology for recommendations recognition systems. But a lot of these systems are corrupted because they have a certain bias associated with them and are hence not accurate with their functioning. Human Biases That Can Result Into ML Biases include: Reporting Bias/Sample Bias, Prejudice Bias, Measurement Bias, Automation Bias, Group Attribution Bias, and Algorithm Bias, among others. What Can Be Done To Prevent Biases? Read More