In many applications of machine learning, such as machine learning for medical diagnosis, we would like to have machine learning algorithms that do not memorize sensitive information about the training set, such as the specific medical histories of individual patients. Differential privacy is a framework for measuring the privacy guarantees provided by an algorithm. Through the lens of differential privacy, we can design machine learning algorithms that responsibly train models on private data. Our works (with Martín Abadi, Úlfar Erlingsson, Ilya Mironov, Ananth Raghunathan, Shuang Song and Kunal Talwar) on differential privacy for machine learning have made it very easy for machine learning researchers to contribute to privacy research—even without being an expert on the mathematics of differential privacy. In this blog post, we’ll show you how to do it. Read More