It’s easy to see the massive rise in popularity for venture investment, conferences, and business-related queries for “machine learning” since 2012 – but most technology executives often have trouble identifying where their business might actually apply machine learning (ML) to business problems.
With new AI buzzwords being created weekly, it can seem difficult to get ahold of what applications are viable, and which are hype, hyperbole or hoax
In this article, we’ll break down categories of business problems that are commonly handled by ML, and we’ll also provide actionable advice to begin a ML initiative with the right approach and perspective (even it’s the first such project you’ve undertaken at your company). Read More