Imagine you’re cruising in your new Tesla, autopilot engaged. Suddenly you feel yourself veer into the other lane, and you grab the wheel just in time to avoid an oncoming car. When you pull over, pulse still racing, and look over the scene, it all seems normal. But upon closer inspection, you notice a series of translucent stickers leading away from the dotted lane divider. And to your Tesla, these stickers represent a non-existent bend in the road that could have killed you.
… As more machines become artificially intelligent, computer scientists are learning that A.I. can be manipulated into perceiving the world in wrong, sometimes dangerous ways. And because these techniques “trick” the system instead of “hacking” it, federal laws and security standards may not protect us from these malicious new behaviors — and the serious consequences they can have. Read More
Daily Archives: August 22, 2019
Rhythm and Synchrony in a Cortical Network Model
We studied mechanisms for cortical gamma-band activity in the cerebral cortex and identified neurobiological factors that affect such activity. This was done by analyzing the behavior of a previously developed, data-driven, large-scale network model that simulated many visual functions of monkey V1 cortex (Chariker et al., 2016). Gamma activity was an emergent property of the model. The model’s gamma activity, like that of the real cortex, was (1) episodic, (2) variable in frequency and phase, and (3) graded in power with stimulus variables like orientation. The spike firing of the model’s neuronal population was only partially synchronous during multiple firing events (MFEs) that occurred at gamma rates. Detailed analysis of the model’s MFEs showed that gamma-band activity was multidimensional in its sources. Most spikes were evoked by excitatory inputs. A large fraction of these inputs came from recurrent excitation within the local circuit, but feedforward and feedback excitation also contributed, either through direct pulsing or by raising the overall baseline. Inhibition was responsible for ending MFEs, but disinhibition led directly to only a small minority of the synchronized spikes. As a potential explanation for the wide range of gamma characteristics observed in different parts of cortex, we found that the relative rise times of AMPA and GABA synaptic conductances have a strong effect on the degree of synchrony in gamma. Read More
Orientation Selectivity from Very Sparse LGN Inputs in a Comprehensive Model of Macaque V1 Cortex
A new computational model of the primary visual cortex (V1) of the macaque monkey was constructed to reconcile the visual functions of V1 with anatomical data on its LGN input, the extreme sparseness of which presented serious challenges to theoretically sound explanations of cortical function. We demonstrate that, even with such sparse input, it is possible to produce robust orientation selectivity, as well as continuity in the orientation map. We went beyond that to find plausible dynamic regimes of our new model that emulate simultaneously experimental data for a wide range of V1 phenomena, beginning with orientation selectivity but also including diversity in neuronal responses, bimodal distributions of the modulation ratio (the simple/complex classification), and dynamic signatures, such as gamma-band oscillations. Intracortical interactions play a major role in all aspects of the visual functions of the model. Read More
A Mathematical Model Unlocks the Secrets of Vision
This is the great mystery of human vision: Vivid pictures of the world appear before our mind’s eye, yet the brain’s visual system receives very little information from the world itself. Much of what we “see” we conjure in our heads.
“A lot of the things you think you see you’re actually making up,” said Lai-Sang Young, a mathematician at New York University. “You don’t actually see them.” Read More
This Tesla Mod Turns a Model S Into a Mobile ‘Surveillance Station’
Automatic license plate reader cameras are controversial enough when law enforcement deploys them, given that they can create a panopticon of transit throughout a city. Now one hacker has found a way to put a sample of that power—for safety, he says, and for surveillance—into the hands of anyone with a Tesla and a few hundred dollars to spare. Read More