Explainability is essential for users to effectively understand, trust, and manage powerful artificial intelligence applications.
Recent successes in machine learning (ML) have led to a new wave of artificial intelligence (AI) applications that offer extensive benefits to a diverse range of fields. However, many of these systems are not able to explain their autonomous decisions and actions to human users. Explanations may not be essential for certain AI applications, and some AI researchers argue that the emphasis on explanation is misplaced, too difficult to achieve, and perhaps unnecessary. However, for many critical applications in defense, medicine, finance, and law, explanations are essential for users to understand, trust, and effectively manage these new, artificially intelligent partners [see recent reviews (1–3)].
Recent AI successes are largely attributed to new ML techniques that construct models in their internal representations. These include support vector machines (SVMs), random forests, probabilistic graphical models, reinforcement learning (RL), and deep learning (DL) neural networks. Although these models exhibit high performance, they are opaque in terms of explainability. There may be inherent conflict between ML performance (e.g., predictive accuracy) and explainability. Often, the highest performing methods (e.g., DL) are the least explainable, and the most explainable (e.g., decision trees) are the least accurate. Figure 1 illustrates this with a notional graph of the performance-explainability tradeoff for some of the ML techniques. Read More