How to get your data scientists and data engineers rowing in the same direction

In the slow process of developing machine learning models, data scientists and data engineers need to work together, yet they often work at cross purposes. As ludicrous as it sounds, I’ve seen models take months to get to production because the data scientists were waiting for data engineers to build production systems to suit the model, while the data engineers were waiting for the data scientists to build a model that worked with the production systems.

A previous article by VentureBeat reported that 87% of machine learning projects don’t make it into production, and a combination of data concerns and lack of collaboration were primary factors. On the collaboration side, the tension between data engineers and data scientists — and how they work together — can lead to unnecessary frustration and delays. While team alignment and empathy building can alleviate these tensions, adopting some developing MLOps technologies can help mitigate issues at the root cause. Read More

#devops