Adversarial Interaction Attack: Fooling AI to Misinterpret Human Intentions

Understanding the actions of both humans and artificial intelligence (AI) agents is important before modern AI systems can be fully integrated into our daily life. In this paper, we show that, despite their current huge success, deep learning based AI systems can be easily fooled by subtle adversarial noise to misinterpret the intention of an action in interaction scenarios. Based on a case study of skeleton-based human interactions, we propose a novel adversarial attack on interactions, and demonstrate how DNN-based interaction models can be tricked to predict the participants’ reactions in unexpected ways. From a broader perspective, the scope of our proposed attack method is not confined to problems related to skeleton data but can also be extended to any type of problems involving sequential regressions. Our study highlights potential risks in the interaction loop with AI and humans, which need to be carefully addressed when deploying AI systems in safety-critical applications. Read More

#adversarial

Adversarial Threats to DeepFake Detection: A Practical Perspective

Facially manipulated images and videos or DeepFakes can be used maliciously to fuel misinformation or defame individuals. Therefore, detecting DeepFakes is crucial to increase the credibility of social media platforms and other media sharing web sites. State-of-the art DeepFake detection techniques rely on neural network based classification models which are known to be vulnerable to adversarial examples. In this work, we study the vulnerabilities of state-of-the-art DeepFake detection methods from a practical stand point. We perform adversarial attacks on DeepFake detectors in a black box setting where the adversary does not have complete knowledge of the classification models. We study the extent to which adversarial perturbations transfer across different models and propose techniques to improve the transferability of adversarial examples. We also create more accessible attacks using Universal Adversarial Perturbations which pose a very feasible attack scenario since they can be easily shared amongst attackers. We perform our evaluations on the winning entries of the DeepFake Detection Challenge (DFDC) and demonstrate that they can be easily bypassed in a practical attack scenario by designing transferable and accessible adversarial attacks. Read More

#adversarial, #big7, #fake

Adversarial Deepfakes: Evaluating Vulnerability of Deepfake Detectors to Adversarial Examples

Recent advances in video manipulation techniques have made the generation of fake videos more accessible than ever before. Manipulated videos can fuel disinformation and reduce trust in media. Therefore detection of fake videos has garnered immense interest in academia and industry. Recently developed Deepfake detection methods rely on DeepNeural Networks (DNNs) to distinguish AI-generated fake videos from real videos. In this work, we demonstrate that it is possible to bypass such detectors by adversarially modifying fake videos synthesized using existing Deepfake generation methods. We further demonstrate that our adversarial perturbations are robust to image and video compression codecs, making them a real-world threat. We present pipelines in both white-box and black-box attack scenarios that can fool DNN based Deepfake detectors into classifying fake videos as real. Read More

#adversarial, #fake

Re-imagining Algorithmic Fairness in India and Beyond

Conventional algorithmic fairness is West-centric, as seen in its sub-groups, values, and optimisations. In this paper, we de-center algorithmic fairness and analyse AI power in India. Based on 36 qualitative interviews and a discourse analysis of algorithmic deployments in India, we find that several assumptions of algorithmic fairness are challenged in India. We find that data is not always reliable due to socio-economic factors, users are given third world treatment by ML makers, and AI signifies unquestioning aspiration. We contend that localising model fairness alone can be window dressing in India, where the distance between models and oppressed communities is large. Instead, we re-imagine algorithmic fairness in India and provide a roadmap to re-contextualise data and models, empower oppressed communities, and enable Fair-ML ecosystems. Read More

#bias, #performance

Vokenization: Improving Language Understanding with Contextualized, Visual-Grounded Supervision

Humans learn language by listening, speaking, writing, reading, and also, via interaction with the multimodal real world. Existing language pretraining frameworks show the effectiveness of text-only self-supervision while we explore the idea of a visually-supervised language model in this paper. We find that the main reason hindering this exploration is the large divergence in magnitude and distributions between the visually-grounded language datasets and pure-language corpora. Therefore, we develop a technique named “vokenization” that extrapolates multimodal alignments to language-only data by contextually mapping language tokens to their related images (which we call “vokens”).The “vokenizer” is trained on relatively small image captioning datasets and we then apply it to generate vokens for large language corpora. Trained with these contextually generated vokens, our visually-supervised language models show consistent improvements over self-supervised alternatives on multiple pure-language tasks such as GLUE, SQuAD, and SWAG. Read More

#image-recognition, #nlp

Employee Surveillance Is Rising to New Dystopian Heights

Amazon’s new driver surveillance cameras may put employee privacy in the backseat.

The way to becoming a trillion-dollar company isn’t paved with philanthropy — on the contrary, it lies in pushing legal limits to new dystopian heights.

Recently, Amazon revealed the use of constant monitoring cameras in company vehicles — to “improve driver behavior,” according to an informational video from the firm.

However, in light of how Amazon develops surveillance techniques to monitor warehouse workers — both on and off the clock — Amazon delivery drivers’ lives could become a lot harder. Read More

#big7, #surveillance