Features obtained from object recognition CNNs have been widely used for measuring perceptual similarities between images. Such differentiable metrics can be used as perceptual learning losses to train image enhancement models. However, the choice of the distance function between input and target features may have a consequential impact on the performance of the trained model. While using the norm of the difference between extracted features leads to limited hallucination of details, measuring the distance between distributions of features may generate more textures; yet also more unrealistic details and artifacts. In this paper, we demonstrate that aggregating 1D-Wasserstein distances between CNN activations is more reliable than the existing approaches, and it can significantly improve the perceptual performance of enhancement models. More explicitly, we show that in imaging applications such as denoising, super-resolution, demosaicing, deblurring and JPEG artifact removal, the proposed learning loss outperforms the current state-of-the-art on reference-based perceptual losses. This means that the proposed learning loss can be plugged into different imaging frameworks and produce perceptually realistic results. Read More
Daily Archives: May 27, 2021
From conversation to code: Microsoft introduces its first product features powered by GPT-3
At its Build developers conference, Microsoft unveiled its first features in a customer product powered by GPT-3, the powerful natural language model developed by OpenAI, which will help users build apps without needing to know how to write computer code or formulas.
GPT-3 will be integrated in Microsoft Power Apps, the low code app development platform that helps everyone from people with little or no coding experience — so-called “citizen developers” — to professional developers with deep programming expertise build applications to improve business productivity or processes. Read More
Can you teach a machine to think?
The road to building an artificial general intelligence begins with stopping current AI models from perpetuating racism, sexism, and other forms of pernicious bias.
“Building a machine that can think and do things that people can do has been the goal of AI since the very beginning, but it’s been a long, long struggle. And past hype has led to failure. So this idea of artificial general intelligence has become, you know, very controversial and very divisive — but it’s having a comeback.” Read More