We present StyleDrop that enables the generation of images that faithfully follow a specific style, powered by Muse, a text-to-image generative vision transformer. StyleDrop is extremely versatile and captures nuances and details of a user-provided style, such as color schemes, shading, design patterns, and local and global effects. StyleDrop works by efficiently learning a new style by fine-tuning very few trainable parameters (less than 1% of total model parameters), and improving the quality via iterative training with either human or automated feedback. Better yet, StyleDrop is able to deliver impressive results even when the user supplies only a single image specifying the desired style. An extensive study shows that, for the task of style tuning text-to-image models, Styledrop on Muse convincingly outperforms other methods, including DreamBooth and Textual Inversion on Imagen or Stable Diffusion. — Read More