GPT-4 Architecture, Infrastructure, Training Dataset, Costs, Vision, MoE

OpenAI is keeping the architecture of GPT-4 closed not because of some existential risk to humanity but because what they’ve built is replicable. In fact, we expect Google, Meta, Anthropic, Inflection, Character, Tencent, ByteDance, Baidu, and more to all have models as capable as GPT-4 if not more capable in the near term.

Don’t get us wrong, OpenAI has amazing engineering, and what they built is incredible, but the solution they arrived at is not magic. It is an elegant solution with many complex tradeoffs. Going big is only a portion of the battle. OpenAI’s most durable moat is that they have the most real-world usage, leading engineering talent, and can continue to race ahead of others with future models. — Read More

Yam Peleg posted the details. Yam’s Post Here … at least for now

#chatbots

Inside Google’s big AI shuffle — and how it plans to stay competitive, with Google DeepMind CEO Demis Hassabis

Today, I’m talking to Demis Hassabis, the CEO of Google DeepMind, the newly created division of Google responsible for AI efforts across the company. Google DeepMind is the result of an internal merger: Google acquired Demis’ DeepMind startup in 2014 and ran it as a separate company inside its parent company, Alphabet, while Google itself had an AI team called Google Brain. 

Google has been showing off AI demos for years now, but with the explosion of ChatGPT and a renewed threat from Microsoft in search, Google and Alphabet CEO Sundar Pichai made the decision to bring DeepMind into Google itself earlier this year to create… Google DeepMind.

What’s interesting is that Google Brain and DeepMind were not necessarily compatible or even focused on the same things: DeepMind was famous for applying AI to things like games and protein-folding simulations. The AI that beat world champions at Go, the ancient board game? That was DeepMind’s AlphaGo. Meanwhile, Google Brain was more focused on what’s come to be the familiar generative AI toolset: large language models for chatbots, editing features in Google Photos, and so on. This was a culture clash and a big structure decision with the goal of being more competitive and faster to market with AI products. Read More

#big7, #strategy

Med-PaLM

Med-PaLM is a large language model (LLM) designed to provide high quality answers to medical questions.

Med-PaLM harnesses the power of Google’s large language models, which we have aligned to the medical domain and evaluated using medical exams, medical research, and consumer queries. Our first version of Med-PaLM, preprinted in late 2022, was the first AI system to surpass the pass mark on US Medical License Exam (USMLE) style questions. Med-PaLM also generates accurate, helpful long-form answers to consumer health questions, as judged by panels of physicians and users.

We introduced our latest model, Med-PaLM 2, at our annual health event The Check Up in Q1, 2023. Med-PaLM 2 achieves an accuracy of 86.5% on USMLE-style questions, a 19% leap over our own state of the art results from Med-PaLM. — Read More

#big7

The UN holds a robot press conference about the state of AI

The AI for Good global summit hosted by the U.N. tech agency invited a panel of robots and their creators to a press conference to answer questions from reporters.

At the AI for Good 2023 global summit, a panel of robots and their creators sat in front of the press to answer journalists’ questions on topics such as job automation, artificial intelligence (AI) leadership and collaboration with humans for a better future.

… Altogether nine robots were in attendance, including Sophia, who serves as the U.N. Development Program’s first robot innovation ambassador, a robot healthcare service provider named Grace and a rock star robot called Desdemona. — Read More

#robotics

Train Your AI Model Once and Deploy on Any Cloud with NVIDIA and Run:ai

Organizations are increasingly adopting hybrid and multi-cloud strategies to access the latest compute resources, consistently support worldwide customers, and optimize cost. However, a major challenge that engineering teams face is operationalizing AI applications across different platforms as the stack changes. This requires MLOps teams to familiarize themselves with different environments and developers to customize applications to run across target platforms.

NVIDIA offers a consistent, full stack to develop on a GPU-powered on-premises or on-cloud instance. You can then deploy that AI application on any GPU-powered platform without code changes.

The NVIDIA Cloud Native Stack Virtual Machine Image (VMI) is GPU-accelerated. It comes pre-installed with Cloud Native Stack, which is a reference architecture that includes upstream Kubernetes and the NVIDIA GPU Operator. NVIDIA Cloud Native Stack VMI enables you to build, test, and run GPU-accelerated containerized applications orchestrated by Kubernetes. — Read More

#devops, #nvidia