DoctorGPT is a Large Language Model that can pass the US Medical Licensing Exam. This is an open-source project with a mission to provide everyone their own private doctor. DoctorGPT is a version of Meta’s Llama2 7 billion parameter Large Language Model that was fine-tuned on a Medical Dialogue Dataset, then further improved using Reinforcement Learning & Constitutional AI. Since the model is only 3 Gigabytes in size, it fits on any local device, so there is no need to pay an API to use it. It’s free, made for offline usage which preserves patient confidentiality, and it’s available on iOS, Android, and Web. Pull requests for feature additions and improvements are encouraged. — Read More
Daily Archives: August 14, 2023
Original Father of AI on Dangers! (Prof. Jürgen Schmidhuber)
AudioSep — Separate Anything You Describe
Language-queried audio source separation (LASS) is a new paradigm for computational auditory scene analysis (CASA). LASS aims to separate a target sound from an audio mixture given a natural language query, which provides a natural and scalable interface for digital audio applications. Recent works on LASS, despite attaining promising separation performance on specific sources (e.g., musical instruments, limited classes of audio events), are unable to separate audio concepts in the open domain. In this work, we introduce AudioSep, a foundation model for open-domain audio source separation with natural language queries. We train AudioSep on large-scale multimodal datasets and extensively evaluate its capabilities on numerous tasks including audio event separation, musical instrument separation, and speech enhancement. AudioSep demonstrates strong separation performance and impressive zero-shot generalization ability using audio captions or text labels as queries, substantially outperforming previous audio-queried and language-queried sound separation models. For reproducibility of this work, we will release the source code, evaluation benchmark and pre-trained model at: this https URL. — Read More
#audioMachine unlearning: The critical art of teaching AI to forget
Have you ever tried to intentionally forget something you had already learned? You can imagine how difficult it would be.
As it turns out, it’s also difficult for machine learning (ML) models to forget information. So what happens when these algorithms are trained on outdated, incorrect or private data?
Retraining the model from scratch every time an issue arises with the original dataset is hugely impractical. This has led to the requirement of a new field in AI called machine unlearning. — Read More