AI pioneer Andrew Ng has released a simple online tool that allows anyone to tinker with the dials of a solar geoengineering model, exploring what might happen if nations attempt to counteract climate change by spraying reflective particles into the atmosphere.
The concept of solar geoengineering was born from the realization that the planet has cooled in the months following massive volcanic eruptions, including one that occurred in 1991, when Mt. Pinatubo blasted some 20 million tons of sulfur dioxide into the stratosphere. But critics fear that deliberately releasing such materials could harm certain regions of the world, discourage efforts to cut greenhouse-gas emissions, or spark conflicts between nations, among other counterproductive consequences
The goal of Ng’s emulator, called Planet Parasol, is to invite more people to think about solar geoengineering, explore the potential trade-offs involved in such interventions, and use the results to discuss and debate our options for climate action. The tool, developed in partnership with researchers at Cornell, the University of California, San Diego, and other institutions, also highlights how AI could help advance our understanding of solar geoengineering. — Read More
Try the Model
Daily Archives: August 23, 2024
DreamCoder: Growing generalizable, interpretable knowledge with wake-sleep Bayesian program learning
Expert problem-solving is driven by powerful languages for thinking about problems and their solutions. Acquiring expertise means learning these languages — systems of concepts, alongside the skills to use them. We present DreamCoder, a system that learns to solve problems by writing programs. It builds expertise by creating programming languages for expressing domain concepts, together with neural networks to guide the search for programs within these languages. A “wake-sleep” learning algorithm alternately extends the language with new symbolic abstractions and trains the neural network on imagined and replayed problems. DreamCoder solves both classic inductive programming tasks and creative tasks such as drawing pictures and building scenes. It rediscovers the basics of modern functional programming, vector algebra and classical physics, including Newton’s and Coulomb’s laws. Concepts are built compositionally from those learned earlier, yielding multi-layered symbolic representations that are interpretable and transferrable to new tasks, while still growing scalably and flexibly with experience. — Read More
Revisiting Feature Prediction for Learning Visual Representations from Video
This paper explores feature prediction as a stand-alone objective for unsupervised learning from video and introduces V-JEPA, a collection of vision models trained solely using a feature prediction objective, without the use of pretrained image encoders, text, negative examples, reconstruction, or other sources of supervision. The models are trained on 2 million videos collected from public datasets and are evaluated on downstream image and video tasks. Our results show that learning by predicting video features leads to versatile visual representations that perform well on both motion and appearance-based tasks, without adaption of the model’s parameters; e.g., using a frozen backbone. Our largest model, a ViT-H/16 trained only on videos, obtains 81.9% on Kinetics-400, 72.2% on Something-Something-v2, and 77.9% on ImageNet1K. — Read More
SURVEILLANCE WATCH
“Surveillance Watch”, A Resource For Learning About The Companies Developing Technology, Along With Their Individual Funding Sources. Also Taking Time To Pair It With EFF’s Atlas, To Find Out What Is In Each Area Of USA (not all countries have EFF Atlas Points).
WebSite
These Living Computers Are Made from Human Neurons
In the search for less energy-hungry artificial intelligence, some scientists are exploring living computers
Artificial intelligence systems, even those as sophisticated as ChatGPT, depend on the same silicon-based hardware that has been the bedrock of computing since the 1950s. But what if computers could be molded from living biological matter? Some researchers in academia and the commercial sector, wary of AI’s ballooning demands for data storage and energy, are focusing on a growing field known as biocomputing. This approach uses synthetic biology, such as miniature clusters of lab-grown cells called organoids, to create computer architecture. Biocomputing pioneers include Swiss company FinalSpark, which earlier this year debuted its “Neuroplatform”—a computer platform powered by human-brain organoids—that scientists can rent over the Internet for $500 a month. — Read More
The operation of the Neuroplatform currently relies on an architecture that can be classified as wetware: the mixing of hardware, software, and biology. The main innovation delivered by the Neuroplatform is through the use of four Multi-Electrode Arrays (MEAs) housing the living tissue – organoids, which are 3D cell masses of brain tissue.
Each MEA holds four organoids, interfaced by eight electrodes used for both stimulation and recording. Data goes to-and-fro via digital analog converters (Intan RHS 32 controller) with a 30kHz sampling frequency and a 16-bit resolution. These key architectural design features are supported by a microfluidic life support system for the MEAs, and monitoring cameras. Last but not least, a software stack allows researchers to input data variables, and then read and interpret processor output. — Read More
