DeepMind’s SCoRe shows LLMs can use their internal knowledge to correct their mistakes

While large language models (LLMs) are becoming increasingly effective at complicated tasks, there are many cases where they can’t get the correct answer on the first try. This is why there is growing interest in enabling LLMs to spot and correct their mistakes, also known as “self-correction.” However, current attempts at self-correction are limited and have requirements that often cannot be met in real-world situations.

In a new paper, researchers at Google DeepMind introduce Self-Correction via Reinforcement Learning (SCoRe), a novel technique that significantly improves the self-correction capabilities of LLMs using only self-generated data. SCoRe can be a valuable tool for making LLMs more robust and reliable and opens new possibilities for enhancing their reasoning and problem-solving abilities. — Read More

#accuracy, #trust

Training Language Models to Self-Correct via Reinforcement Learning

Self-correction is a highly desirable capability of large language models (LLMs), yet it has consistently been found to be largely ineffective in modern LLMs. Existing approaches for training self-correction either require multiple models or rely on a more capable model or other forms of supervision. To this end, we develop a multi-turn online reinforcement learning (RL) approach, SCoRe, that significantly improves an LLM’s self-correction ability using entirely self-generated data. To build SCoRe, we first show that variants of supervised fine-tuning (SFT) on offline model-generated correction traces are insufficient for instilling self-correction behavior. In particular, we observe that training via SFT either suffers from a distribution mismatch between the training data and the model’s own responses or implicitly prefers only a certain mode of correction behavior that is often not effective at test time. SCoRe addresses these challenges by training under the model’s own distribution of self-generated correction traces and using appropriate regularization to steer the learning process into learning a self-correction strategy that is effective at test time as opposed to simply fitting high-reward responses for a given prompt. This regularization prescribes running a first phase of RL on a base model to generate a policy initialization that is less susceptible to collapse and then using a reward bonus to amplify self-correction during training. When applied to Gemini 1.0 Pro and 1.5 Flash models, we find that SCoRe achieves state-of-the-art self-correction performance, improving the base models’ self-correction by 15.6% and 9.1% respectively on the MATH and HumanEval benchmarks. — Read More

#accuracy, #trust