Evaluating large language model (LLM) based applications is inherently challenging due to the unique nature of these systems. Unlike traditional software applications, where outputs are deterministic and predictable, LLMs generate outputs that can vary each time they are run, even with the same input. This variability arises from the probabilistic nature of these models, which means there is no single correct output for any given input. Consequently, testing LLM-based applications requires specialized evaluation techniques — known today as ‘evals’ — to ensure they meet performance and reliability standards. — Read More