Daily Archives: September 26, 2025
Detecting and countering misuse of AI: August 2025
We’ve developed sophisticated safety and security measures to prevent the misuse of our AI models. But cybercriminals and other malicious actors are actively attempting to find ways around them. Today, we’re releasing a report that details how.
Our Threat Intelligence report discusses several recent examples of Claude being misused, including a large-scale extortion operation using Claude Code, a fraudulent employment scheme from North Korea, and the sale of AI-generated ransomware by a cybercriminal with only basic coding skills. We also cover the steps we’ve taken to detect and counter these abuses. — Read More
There Are More Robots Working in China Than the Rest of the World Combined
China is making and installing factory robots at a far greater pace than any other country, with the United States a distant third, further strengthening China’s already dominant global role in manufacturing.
There were more than two million robots working in Chinese factories last year, according to a report released Thursday by the International Federation of Robotics, a nonprofit trade group for makers of industrial robots. Factories in China installed nearly 300,000 new robots last year, more than the rest of the world combined, the report found. American factories installed 34,000. — Read More
Becoming a Research Engineer at a Big LLM Lab — 18 Months of Strategic Job Hunting
A couple of days ago, I signed as a research engineer with Mistral, one of the few ML foundation model labs with more than a billion-dollar funding.
My excitement on Twitter found quite some resonance — partly in the form of questions for advice. Getting here was not an accident. I have strategically worked towards this outcome for an extended period, and I have a few things to share about what worked for me. In a sense, this blog post is a sequel to How to become an ML Engineer in 5 to 7 steps, where I covered my self-taught path toward becoming a machine learning engineer from a non-CS (though STEM) background. Here, I outline how I worked towards what I hope will be a career-defining role. I started this work after working in my first ML position for about a year.
This is an account of my personal experiences, which I based on advice I got from friends and found online. I don’t claim it’s original, and my sample is n=1, so cherry-pick what resonates for you. I still hope some find it useful. — Read More