Diffusion Transformers with Representation Autoencoders

Latent generative modeling, where a pretrained autoencoder maps pixels into a latent space for the diffusion process, has become the standard strategy for Diffusion Transformers (DiT); however, the autoencoder component has barely evolved. Most DiTs continue to rely on the original VAE encoder, which introduces several limitations: outdated backbones that compromise architectural simplicity, low-dimensional latent spaces that restrict information capacity, and weak representations that result from purely reconstruction-based training and ultimately limit generative quality. In this work, we explore replacing the VAE with pretrained representation encoders (e.g., DINO, SigLIP, MAE) paired with trained decoders, forming what we term Representation Autoencoders (RAEs).

These models provide both high-quality reconstructions and semantically rich latent spaces, while allowing for a scalable transformer-based architecture. Since these latent spaces are typically high-dimensional, a key challenge is enabling diffusion transformers to operate effectively within them. We analyze the sources of this difficulty, propose theoretically motivated solutions, and validate them empirically. — Read More

#performance

Why Signal’s post-quantum makeover is an amazing engineering achievement

The encryption protecting communications against criminal and nation-state snooping is under threat. As private industry and governments get closer to building useful quantum computers, the algorithms protecting Bitcoin wallets, encrypted web visits, and other sensitive secrets will be useless. No one doubts the day will come, but as the now-common joke in cryptography circles observes, experts have been forecasting this cryptocalypse will arrive in the next 15 to 30 years for the past 30 years.

The uncertainty has created something of an existential dilemma: Should network architects spend the billions of dollars required to wean themselves off quantum-vulnerable algorithms now, or should they prioritize their limited security budgets fighting more immediate threats such as ransomware and espionage attacks? Given the expense and no clear deadline, it’s little wonder that less than half of all TLS connections made inside the Cloudflare network and only 18 percent of Fortune 500 networks support quantum-resistant TLS connections. It’s all but certain that many fewer organizations still are supporting quantum-ready encryption in less prominent protocols. — Read More

#quantum

Google DeepMind CEO: We Want To Build A Virtual Cell

Read More

#videos