Next Gen Stats: Intro to Passing Score metric

Next Gen Stats teamed up with the AWS Proserve data science group to develop a more comprehensive metric for evaluating passing performance: the Next Gen Stats Passing Score. Built off of seven different AWS-powered machine-learning models, the NGS Passing Score seeks to assess a quarterback’s execution on every pass attempt and transform that evaluation into a digestible score with a range between 50 and 99. The score can be aggregated on any sample of pass attempts while still maintaining validity in rank order.

… Instead of simply awarding all passing yards, touchdowns and interceptions to the quarterback, the NGS Passing Score equation leverages the outputs of our models to form the components that best 

  • Evaluate passing performance relative to a league-average expectation.
  • Isolate the factors that the quarterback can control.
  • Represent the most indicative features of winning football games.
  • Encompass passing performance in a single composite score (ranging from 50 to 99).
  • Generate valid scores at any sample size of pass attempts.
Read More #big7, #machine-learning

AI’s Smarts Now Come With a Big Price Tag

As language models get more complex, they also get more expensive to create and run. Some companies are locked out.

Calvin Qi, who works at a search startup called Glean, would love to use the latest artificial intelligence algorithms to improve his company’s products.

Glean provides tools for searching through applications like Gmail, Slack, and Salesforce. Qi says new AI techniques for parsing language would help Glean’s customers unearth the right file or conversation a lot faster.

But training such a cutting-edge AI algorithm costs several million dollars. So Glean uses smaller, less capable AI models that can’t extract as much meaning from text. Read More

#deep-learning, #machine-learning, #training

Does Your Dermatology Classifier Know What It Doesn’t Know? Detecting the Long-Tail of Unseen Conditions

Supervised deep learning models have proven to be highly effective in classification of dermatological conditions. These models rely on the availability of abundant labeled training examples. However, in the real-world, many dermatological conditions are individually too infrequent for per-condition classification with supervised learning. Although individually infrequent, these conditions may collectively be common and therefore are clinically significant in aggregate. To prevent models from generating erroneous outputs on such examples, there remains a considerable unmet need for deep learning systems that can better detect such infrequent conditions. These infrequent ‘outlier’ conditions are seen very rarely (or not at all) during training. In this paper, we frame this task as an out-of-distribution (OOD) detection problem. We set up a benchmark ensuring that outlier conditions are disjoint between the model training, validation, and test sets. Unlike traditional OOD detection benchmarks where the task is to detect dataset distribution shift, we aim at the more challenging task of detecting subtle semantic differences. We propose a novel hierarchical outlier detection (HOD) loss, which assigns multiple abstention classes corresponding to each training outlier class and jointly performs a coarse classification of inliers vs. outliers, along with fine-grained classification of the individual classes. We demonstrate that the proposed HOD loss based approach outperforms leading methods that leverage outlier data during training. Further, performance is significantly boosted by using recent representation learning methods (BiT, SimCLR, MICLe). Further, we explore ensembling strategies for OOD detection and propose a diverse ensemble selection process for the best result. We also perform a subgroup analysis over conditions of varying risk levels and different skin types to investigate how OOD performance changes over each subgroup and demonstrate the gains of our framework in comparison to baseline. Furthermore, we go beyond traditional performance metrics and introduce a cost matrix for model trust analysis to approximate downstream clinical impact. We use this cost matrix to compare the proposed method against the baseline, thereby making a stronger case for its effectiveness in real-world scenarios. Read More

#performance, #machine-learning

Physics-based Machine Learning

Welcome to the Physics-based Deep Learning Book (v0.1)

This document contains a practical and comprehensive introduction of everything related to deep learning in the context of physical simulations. As much as possible, all topics come with hands-on code examples in the form of Jupyter notebooks to quickly get started. Beyond standard supervised learning from data, we’ll look at physical loss constraints, more tightly coupled learning algorithms with differentiable simulations, as well as reinforcement learning and uncertainty modeling. We live in exciting times: these methods have a huge potential to fundamentally change what computer simulations can achieve. Read More

#machine-learning

Machine Learning Engineer Roadmap in 2021

#machine-learning

Has AI found a new Foundation?

I

n August, 32 faculty and 117 research scientists, postdocs, and students at Stanford University, long one of the biggest players in AI, declared that there has been a “sweeping paradigm shift in AI”. They coined a new term, “Foundation Models” to characterize the new paradigm, joined forces in a “Center for Research on Foundation Models”, and published the massive 212-page report “On the Opportunities and Risks of Foundation Models.”

Although the term is new, the general approach is not. You train a big neural network (like the well-known GPT-3) on an enormous amount of data, and then you adapt (“fine-tune”) the model to a bunch of more specific tasks (in the words of the report, “a foundation model …[thus] serves as [part of] the common basis from which many task-specific models are built via adaptation”). The basic model thus serves as the “foundation” (hence the term) of AIs that carry out more specific tasks. The approach started to gather momentum in 2018, when Google developed the natural language processing model called BERT, and it became even more popular with the introduction last year of OpenAI’s GPT-3. Read More

#artificial-intelligence, #machine-learning

From Motor Control to Team Play in Simulated Humanoid Football

Read More

Read Paper

#videos, #machine-learning

Machine Unlearning

—Once users have shared their data online, it is generally difficult for them to revoke access and ask for the data to be deleted. Machine learning (ML) exacerbates this problem because any model trained with said data may have memorized it, putting users at risk of a successful privacy attack exposing their information. Yet, having models unlearn is notoriously difficult.

We introduce SISA training, a framework that expedites the unlearning process by strategically limiting the influence of a data point in the training procedure. While our framework is applicable to any learning algorithm, it is designed to achieve the largest improvements for stateful algorithms like stochastic gradient descent for deep neural networks. SISA training reduces the computational overhead associated with unlearning, even in the worst-case setting where unlearning requests are made uniformly across the training set. In some cases, the service provider may have a prior on the distribution of unlearning requests that will be issued by users. We may take this prior into account to partition and order data accordingly, and further decrease overhead from unlearning.

Our evaluation spans several datasets from different domains, with corresponding motivations for unlearning. Under no distributional assumptions, for simple learning tasks, we observe that SISA training improves time to unlearn points from the Purchase dataset by 4.63×, and 2.45× for the SVHN dataset, over retraining from scratch. SISA training also provides a speed-up of 1.36× in retraining for complex learning tasks such as ImageNet classification; aided by transfer learning, this results in a small degradation in accuracy. Our work contributes to practical data governance in machine unlearning. Read More

#machine-learning, #performance

Practical Deep Learning for Coders 10

Read More

#machine-learning, #videos

DeepMind unveils PonderNet, just please don’t call it ‘pondering’

DeepMind scientists suggest a way for a computer program to calculate whether or not to give up calculating. But Edgar Allan Poe would not have recognized it as “pondering.”

If you’re going to follow the news in artificial intelligence, you had better have a copy of an English dictionary with you, and maybe a couple of etymological dictionaries as well.

Today’s deep learning forms of AI are proliferating uses of ordinary words that can be potentially deeply misleading. That includes suggesting that the machine is actually doing something that a person does, such as thinking, reasoning, knowing, seeing, wondering.

The latest example is a new program from DeepMind, the AI unit of Google based in London. DeepMind researchers on Thursday unveiled what they call PonderNet, a program that can make a choice about whether to explore possibilities for a problem or to give up.  Read More

#machine-learning