Reinforcement learning algorithms usually assume that all actions are always available to anagent. However, both people and animals un-derstand the general link between the features of their environment and the actions that are feasible.Gibson (1977) coined the term “affordances” to describe the fact that certain states enable an agent to do certain actions, in the context of embodied agents. In this paper, we develop a theory of affordances for agents who learn and plan in Markov Decision Processes. Affordances play a dual role in this case. On one hand, they allow faster planning, by reducing the number of actions available in any given situation. On the other hand, they facilitate more efficient and precise learning of transition models from data, especially when such models require function approximation. We establish these properties through theoretical results as well as illustrative examples. We also propose an approach to learn affordances and use it to estimate transition models that are simpler and generalize better. Read More
Tag Archives: Reinforcement Learning
A Deep Dive into Reinforcement Learning
Let’s take a deep dive into reinforcement learning. In this article, we will tackle a concrete problem with modern libraries such as TensorFlow, TensorBoard, Keras, and OpenAI gym. You will see how to implement one of the fundamental algorithms called deep Q-learning to learn its inner workings. Regarding the hardware, the whole code will work on a typical PC and use all found CPU cores (this is handled out of the box by TensorFlow). Read More
A deep reinforcement learning framework to identify key players in complex networks
Network science is an academic field that aims to unveil the structure and dynamics behind networks, such as telecommunication, computer, biological and social networks. One of the fundamental problems that network scientists have been trying to solve in recent years entails identifying an optimal set of nodes that most influence a network’s functionality, referred to as key players.
Identifying key players could greatly benefit many real-world applications, for instance, enhancing techniques for the immunization of networks, as well as aiding epidemic control, drug design and viral marketing. Due to its NP-hard nature, however, solving this problem using exact algorithms with polynomial time complexity has proved highly challenging.
Researchers at National University of Defense Technology in China, University of California, Los Angeles (UCLA), and Harvard Medical School (HMS) have recently developed a deep reinforcement learning (DRL) framework, dubbed FINDER, that could identify key players in complex networks more efficiently. Read More
Building AI Trading Systems
About two years ago I wrote a little piece about applying Reinforcement Learning to the markets. A few people asked me what became of it. So this post covers some high-level things I’ve learned. It’s more of a rant than an organized post, really. If there is enough interest in this topic I’d be happy to go into more technical detail in future posts, but that’s TBD. Please let me know in the comments or on Twitter.
Over the past few years I’ve built four and a half trading systems. The first one was crap. The second one I never finished because I realized early on that it could never work either. The third one was abandoned for personal and political reasons. The fourth one worked extremely well for 12-18 months, producing something on the order of a full-time salary with a tiny investment of a few thousands dollars. Then, profits started decreasing and I decided to move on to other things. I lacked the motivation to build yet another system. Some of the systems I worked on were for the financial markets, but the last one was applied to the crypto markets. So keep that in mind while reading. Read More
David Silver: AlphaGo, AlphaZero, and Deep Reinforcement Learning
Massively Scaling Reinforcement Learning with SEED RL
Reinforcement learning (RL) has seen impressive advances over the last few years as demonstrated by the recent success in solving games such as Go and Dota 2. Models, or agents, learn by exploring an environment, such as a game, while optimizing for specified goals. However, current RL techniques require increasingly large amounts of training to successfully learn even simple games, which makes iterating research and product ideas computationally expensive and time consuming. Read More
Code
An algorithm that learns through rewards may show how our brain does too
In 1951, Marvin Minsky, then a student at Harvard, borrowed observations from animal behavior to try to design an intelligent machine. Drawing on the work of physiologist Ivan Pavlov, who famously used dogs to show how animals learn through punishments and rewards, Minsky created a computer that could continuously learn through similar reinforcement to solve a virtual maze.
At the time, neuroscientists had yet to figure out the mechanisms within the brain that allow animals to learn in this way. But Minsky was still able to loosely mimic the behavior, thereby advancing artificial intelligence. Several decades later, as reinforcement learning continued to mature, it in turn helped the field of neuroscience discover those mechanisms, feeding into a virtuous cycle of advancement between the two fields. Read More
Reimagining Reinforcement Learning – Upside Down
For all the hype around winning game play and self-driving cars, traditional Reinforcement Learning (RL) has yet to deliver as a reliable tool for ML applications. Here we explore the main drawbacks as well as an innovative approach to RL that dramatically reduces the training compute requirement and time to train. Read More
Breakthrough Research In Reinforcement Learning From 2019
Reinforcement learning (RL) continues to be less valuable for business applications than supervised learning, and even unsupervised learning. It is successfully applied only in areas where huge amounts of simulated data can be generated, like robotics and games.
However, many experts recognize RL as a promising path towards Artificial General Intelligence (AGI), or true intelligence. Thus, research teams from top institutions and tech leaders are seeking ways to make RL algorithms more sample-efficient and stable.
We’ve selected and summarized 10 research papers that we think are representative of the latest research trends in reinforcement learning. Read More
On the Measure of Intelligence
To make deliberate progress towards more intelligent and more human-like artificial systems, we need to be following an appropriate feedback signal: we need to be able to define and evaluate intelligence in a way that enables comparisons between two systems,as well as comparisons with humans. Over the past hundred years, there has been an abundance of attempts to define and measure intelligence, across both the fields of psychology and AI. We summarize and critically assess these definitions and evaluation approaches,while making apparent the two historical conceptions of intelligence that have implicitly guided them. We note that in practice, the contemporary AI community still gravitates to-wards benchmarking intelligence by comparing the skill exhibited by AIs and humans at specific tasks, such as board games and video games. We argue that solely measuring skill at any given task falls short of measuring intelligence, because skill is heavily modulated by prior knowledge and experience: unlimited priors or unlimited training data allow experimenters to “buy” arbitrary levels of skills for a system, in a way that masks the system’s own generalization power. We then articulate a new formal definition of intelligence based on Algorithmic Information Theory, describing intelligence as skill-acquisition efficiency and highlighting the concepts of scope,generalization difficulty,priors, and experience, as critical pieces to be accounted for in characterizing intelligent systems. Using this definition, we propose a set of guidelines for what a general AI benchmark should look like.Finally, we present a new benchmark closely following these guidelines, the Abstraction and Reasoning Corpus (ARC), built upon an explicit set of priors designed to be as close as possible to innate human priors. We argue that ARC can be used to measure a human-like form of general fluid intelligence and that it enables fair general intelligence comparisons between AI systems and humans. Read More