Large Vision-Language Models (LVLMs) have shown promising performance in vision-language understanding and reasoning tasks. However, their visual understanding behaviors remain underexplored. A fundamental question arises: to what extent do LVLMs rely on visual input, and which image regions contribute to their responses? It is non-trivial to interpret the free-form generation of LVLMs due to their complicated visual architecture (e.g., multiple encoders and multi-resolution) and variable-length outputs. In this paper, we extend existing heatmap visualization methods (e.g., iGOS++) to support LVLMs for open-ended visual question answering. We propose a method to select visually relevant tokens that reflect the relevance between generated answers and input image. Furthermore, we conduct a comprehensive analysis of state-of-the-art LVLMs on benchmarks designed to require visual information to answer. Our findings offer several insights into LVLM behavior, including the relationship between focus region and answer correctness, differences in visual attention across architectures, and the impact of LLM scale on visual understanding. The code and data are available at this https URL. — Read More
Tag Archives: Vision
Do What? Teaching Vision-Language-Action Models to Reject the Impossible
Recently, Vision-Language-Action (VLA) models have demonstrated strong performance on a range of robotic tasks. These models rely on multimodal inputs, with language instructions playing a crucial role — not only in predicting actions, but also in robustly interpreting user intent, even when the requests are impossible to fulfill. In this work, we investigate how VLAs can recognize, interpret, and respond to false-premise instructions: natural language commands that reference objects or conditions absent from the environment. We propose Instruct-Verify-and-Act (IVA), a unified framework that (i) detects when an instruction cannot be executed due to a false premise, (ii) engages in language-based clarification or correction, and (iii) grounds plausible alternatives in perception and action. Towards this end, we construct a large-scale instruction tuning setup with structured language prompts and train a VLA model capable of handling both accurate and erroneous requests. Our approach leverages a contextually augmented, semi-synthetic dataset containing paired positive and false-premise instructions, enabling robust detection and natural language correction. Our experiments show that IVA improves false premise detection accuracy by 97.56% over baselines, while increasing successful responses in false-premise scenarios by 50.78%. — Read More
Machine Mental Imagery: Empower MultimodalReasoning with Latent Visual Tokens
Vision-language models (VLMs) excel at multimodal understanding, yet their text-only decoding forces them to verbalize visual reasoning, limiting performance on tasks that demand visual imagination. Recent attempts train VLMs to render explicit images, but the heavy image-generation pre-training often hinders the reasoning ability. Inspired by the way humans reason with mental imagery-the internal construction and manipulation of visual cues-we investigate whether VLMs can reason through interleaved multimodal trajectories without producing explicit images. To this end, we present a Machine Mental Imagery framework, dubbed as Mirage, which augments VLM decoding with latent visual tokens alongside ordinary text. Concretely, whenever the model chooses to “think visually”, it recasts its hidden states as next tokens, thereby continuing a multimodal trajectory without generating pixel-level images. Begin by supervising the latent tokens through distillation from ground-truth image embeddings, we then switch to text-only supervision to make the latent trajectory align tightly with the task objective. A subsequent reinforcement learning stage further enhances the multimodal reasoning capability. Experiments on diverse benchmarks demonstrate that Mirage unlocks stronger multimodal reasoning without explicit image generation. — Read More
Vision Language Models (Better, Faster, Stronger)
Vision Language Models (VLMs) are the talk of the town. In a previous blog post (from April 2024), we talked a lot about VLMs. A major chunk was about LLaVA, the first successful and easily reproducible open-source vision language model, along with tips on how to discover, evaluate, and fine-tune open models.
Since then, so much has changed. Models have become smaller yet more powerful. We’ve seen the rise of new architectures and capabilities (reasoning, agency, long video understanding, etc.). In parallel, entirely new paradigms, such as multimodal Retrieval Augmented Generation (RAG) and multimodal agents have taken shape.
In this blog post, we’ll take a look back and unpack everything that happened with vision language models the past year. You’ll discover key changes, emerging trends, and notable developments. — Read More
Vision-Speech Models: Teaching Speech Models to Converse about Images
The recent successes of Vision-Language models raise the question of how to equivalently imbue a pretrained speech model with vision understanding, an important milestone towards building a multimodal speech model able to freely converse about images. Building such a conversational Vision-Speech model brings its unique challenges: (i) paired image-speech datasets are much scarcer than their image-text counterparts, (ii) ensuring real-time latency at inference is crucial thus bringing compute and memory constraints, and (iii) the model should preserve prosodic features (e.g., speaker tone) which cannot be inferred from text alone. In this work, we introduce MoshiVis, augmenting a recent dialogue speech LLM, Moshi, with visual inputs through lightweight adaptation modules. An additional dynamic gating mechanism enables the model to more easily switch between the visual inputs and unrelated conversation topics. To reduce training costs, we design a simple one-stage, parameter-efficient fine-tuning pipeline in which we leverage a mixture of image-text (i.e., “speechless”) and image-speech samples. We evaluate the model on downstream visual understanding tasks with both audio and text prompts, and report qualitative samples of interactions with MoshiVis. Our inference code will be made available, as well as the image-speech data used for audio evaluation. — Read More
Cops Used DNA to Predict a Suspect’s Face—and Tried to Run Facial Recognition on It
In 2017, detectives working a cold case at the East Bay Regional Park District Police Department got an idea, one that might help them finally get a lead on the murder of Maria Jane Weidhofer. Officers had found Weidhofer, dead and sexually assaulted, at Berkeley, California’s Tilden Regional Park in 1990. Nearly 30 years later, the department sent genetic information collected at the crime scene to Parabon NanoLabs—a company that says it can turn DNA into a face.
Parabon NanoLabs ran the suspect’s DNA through its proprietary machine learning model. Soon, it provided the police department with something the detectives had never seen before: the face of a potential suspect, generated using only crime scene evidence. – Read More
Nightshade, the free tool that ‘poisons’ AI models, is now available for artists to use
It’s here: months after it was first announced, Nightshade, a new, free software tool allowing artists to “poison” AI models seeking to train on their works, is now available for artists to download and use on any artworks they see fit.
Developed by computer scientists on the Glaze Project at the University of Chicago under Professor Ben Zhao, the tool essentially works by turning AI against AI. It makes use of the popular open-source machine learning framework PyTorch to identify what’s in a given image, then applies a tag that subtly alters the image at the pixel level so other AI programs see something totally different than what’s actually there. – Read More
Introducing Segment Anything: Working toward the first foundation model for image segmentation
Segmentation — identifying which image pixels belong to an object — is a core task in computer vision and is used in a broad array of applications, from analyzing scientific imagery to editing photos. But creating an accurate segmentation model for specific tasks typically requires highly specialized work by technical experts with access to AI training infrastructure and large volumes of carefully annotated in-domain data.
Today, we aim to democratize segmentation by introducing the Segment Anything project: a new task, dataset, and model for image segmentation, as we explain in our research paper. We are releasing both our general Segment Anything Model (SAM) and our Segment Anything 1-Billion mask dataset (SA-1B), the largest ever segmentation dataset, to enable a broad set of applications and foster further research into foundation models for computer vision. We are making the SA-1B dataset available for research purposes and the Segment Anything Model is available under a permissive open license (Apache 2.0). Check out the demo to try SAM with your own images. Read More
The Future Direction And Vision For AI
This article sets out the journey of Artificial Intelligence (AI) and the interrelationship with the arrival of the “era of Big Data” alongside 3G and 4G telecoms networks. This will discuss or explore how we arrived at where we are now and also where we are going to next with the era of even bigger albeit increasingly decentralised data in the era of AI meets the IoT (AIoT) and standalone 5G networks that may arrive in the next few years. Read More
New technology gives smart cars ‘x-ray’-like vision
Detects hidden pedestrians, cyclists
Share Australian researchers have developed a technology that allows autonomous vehicles to track moving pedestrians hidden behind buildings and cyclists obscured by cars, trucks, and buses.
The autonomous vehicle uses game changing tools that allows it to ‘’see the world around it using x-ray style vision that penetrates through to pedestrian blind spots.
The technology has been developed as part of a project funded by the iMOVE Cooperative Research Centre in collaboration with the University of Sydney’s Australian Centre for Field Robotics and Australian connected vehicle company Cohda Wireless. iMove has today released its new findings in a final report following three years of research and development. Read More