Neuromorphic Chips and the Future of Your Cell Phone

This article is particularly fun for me since it brings together two developments that I didn’t see coming together, real time computer vision (RTCV), and neuromorphic neural nets (aka spiking neural nets).

We’ve been following neuromorphic nets for a few years now (additional references at the end of this article) and viewed them as the next generation (3rdgeneration) of neural nets.  This was mostly in the context of the pursuit of Artificial General Intelligence (AGI) which is the holy grail (or terrifying terminator) of all we’ve been doing.

Where we got off track was in thinking that neuromorphic nets that are just in their infancy were only for AGI.  Turns out that they facilitate a lot of closer-in capabilities, and among them could be real time computer vision (RTCV).  Why that’s true turns out to have more to do with how neuromorphics are structured than what fancy things they may be able to do.  Here’s the story. Read More

#vision

SpArSe: Sparse Architecture Search for CNNs on Resource-Constrained Microcontrollers

The vast majority of processors in the world are actually microcontroller units (MCUs), which find widespread use performing simple control tasks in applications ranging from automobiles to medical devices and office equipment. The Internet of Things (IoT) promises to inject machine learning into many of these every-day objects via tiny, cheap MCUs. However, these resource-impoverished hardware platforms severely limit the complexity of machine learning models that can be deployed. For example, although convolutional neural networks (CNNs) achieve state-of-theart results on many visual recognition tasks, CNN inference on MCUs is challenging due to severe finite memory limitations. To circumvent the memory challenge associated with CNNs, various alternatives have been proposed that do fit within the memory budget of an MCU, albeit at the cost of prediction accuracy. This paper challenges the idea that CNNs are not suitable for deployment on MCUs. We demonstrate that it is possible to automatically design CNNs which generalize well, while also being small enough to fit onto memory-limited MCUs. Our Sparse Architecture Search method combines neural architecture search with pruning in a single, unified approach, which learns superior models on four popular IoT datasets. The CNNs we find are more accurate and up to 4.35× smaller than previous approaches, while meeting the strict MCU working memory constraint. Read More

#neural-networks, #nvidia

EfficientNet: Improving Accuracy and Efficiency through AutoML and Model Scaling

Convolutional neural networks (CNNs) are commonly developed at a fixed resource cost, and then scaled up in order to achieve better accuracy when more resources are made available. For example, ResNet can be scaled up from ResNet-18 to ResNet-200 by increasing the number of layers, and recently, GPipe achieved 84.3% ImageNet top-1 accuracy by scaling up a baseline CNN by a factor of four. The conventional practice for model scaling is to arbitrarily increase the CNN depth or width, or to use larger input image resolution for training and evaluation. While these methods do improve accuracy, they usually require tedious manual tuning, and still often yield suboptimal performance. What if, instead, we could find a more principled method to scale up a CNN to obtain better accuracy and efficiency?

In our ICML 2019 paper, “EfficientNet: Rethinking Model Scaling for Convolutional Neural Networks”, we propose a novel model scaling method that uses a simple yet highly effective compound coefficient to scale up CNNs in a more structured manner. Unlike conventional approaches that arbitrarily scale network dimensions, such as width, depth and resolution, our method uniformly scales each dimension with a fixed set of scaling coefficients. Powered by this novel scaling method and recent progress on AutoML, we have developed a family of models, called EfficientNets, which superpass state-of-the-art accuracy with up to 10x better efficiency (smaller and faster).  Read More

#neural-networks

EfficientNet: Rethinking Model Scaling for Convolutional Neural Networks

Convolutional Neural Networks (ConvNets) are commonly developed at a fixed resource budget, and then scaled up for better accuracy if more resources are available. In this paper, we systematically study model scaling and identify that carefully balancing network depth, width, and resolution can lead to better performance. Based on this observation, we propose a new scaling method that uniformly scales all dimensions of depth/width/resolution using a simple yet highly effective compound coefficient. We demonstrate the effectiveness of this method on scaling up MobileNets and ResNet.

To go even further, we use neural architecture search to design a new baseline network and scale it up to obtain a family of models, called EfficientNets, which achieve much better accuracy and efficiency than previous ConvNets. In particular, our EfficientNet-B7 achieves stateof-the-art 84.4% top-1 / 97.1% top-5 accuracy on ImageNet, while being 8.4x smaller and 6.1x faster on inference than the best existing ConvNet. Our EfficientNets also transfer well and achieve state-of-the-art accuracy on CIFAR-100 (91.7%), Flowers (98.8%), and 3 other transfer learning datasets, with an order of magnitude fewer parameters. Read More

#neural-networks

Why does Beijing suddenly care about AI ethics?

Did China and the US just agree on something?

This week, Chinese scientists and engineers released a code of ethics for artificial intelligence that might signal a willingness from Beijing to rethink how it uses the technology.

And while China’s government is widely criticized for using AI as a way to monitor citizens, the newly published guidelines seem remarkably similar to ethical frameworks laid out by Western companies and governments.

The Beijing AI Principles were announced last Saturday by the Beijing Academy of Artificial Intelligence (BAAI), an organization backed by the Chinese Ministry of Science and Technology and the Beijing municipal government. They spell out guiding principles for research and development in AI, including that “human privacy, dignity, freedom, autonomy, and rights should be sufficiently respected.” Read More

#china-vs-us, #ethics

An Explicitly Relational Neural Network Architecture

With a view to bridging the gap between deep learning and symbolic AI, we present a novel end-to-end neural network architecture that learns to form propositional representations with an explicitly relational structure from raw pixel data. In order to evaluate and analyse the architecture, we introduce a family of simple visual relational reasoning tasks of varying complexity. We show that the proposed architecture, when pretrained on a curriculum of such tasks, learns to generate reusable representations that better facilitate subsequent learning on previously unseen tasks when compared to a number of baseline architectures. The workings of a successfully trained model are visualised to shed some light on how the architecture functions. Read More

#human, #neural-networks

Jeff Kofman on how AI can empower newsrooms

The voice economy has found its way into newsrooms, changing the workflow of journalists and liberating time to focus on their reporting. GEN talked to Jeff Kofman, Trint CEO and an Emmy award-winning correspondent, about the challenges he faced when launching Trint, how startups can compete in a market dominated by large tech giants and how A.I. in general can empower newsrooms. Read More

#nlp