A team of MIT researchers is making it easier for novices to get their feet wet with artificial intelligence, while also helping experts advance the field.
In a paper presented at the Programming Language Design and Implementation conference this week, the researchers describe a novel probabilistic-programming system named “Gen.” Users write models and algorithms from multiple fields where AI techniques are applied — such as computer vision, robotics, and statistics — without having to deal with equations or manually write high-performance code. Gen also lets expert researchers write sophisticated models and inference algorithms — used for prediction tasks — that were previously infeasible. Read More
Daily Archives: June 29, 2019
A General-Purpose Probabilistic Programming System with Programmable Inference
Although probabilistic programming is widely used for some restricted classes of statistical models, existing systems lack the flexibility and efficiency needed for practical use with more challenging models arising in fields like computer vision and robotics. This paper introduces Gen, a generalpurpose probabilistic programming system that achieves modeling flexibility and inference efficiency via several novel language constructs: (i) the generative function interface for encapsulating probabilistic models; (ii) interoperable modeling languages that strike different flexibility/efficiency tradeoffs; (iii) combinators that exploit common patterns of conditional independence; and (iv) an inference library that empowers users to implement efficient inference algorithms at a high level of abstraction. We show that Gen outperforms state-of-the-art probabilistic programming systems, sometimes by multiple orders of magnitude, on diverse problems including object tracking, estimating 3D body pose from a depth image, and inferring the structure of a time series. Read More